SIDDHARTH INSTITUTE OF ENGINEERING \& TECHNOLOGY:: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road - 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code: Engineering Mechanics (23CE0102)
Course \& Branch: B.Tech (CE \& ME)
Year \& Sem: I/II
Regulation: R23
UNIT - I
Introduction to Engineering Mechanics
Systems of Forces
Friction

1.	a)	Define and give examples of Scalar, Vector and Tensor. Resolve the force $\mathrm{F}=900 \mathrm{~N}$ acting at B into a couple and a force at O as shown in the Figure.1. Figure. 1	[L1][CO1] [L3][CO1]	[2M] $[2 \mathrm{M}]$
	c)	List different system of Coplanar forces and give example for each.	[L1][CO1]	[2M]
	d)	Discuss briefly the application of moment of force.	[L2][CO1]	[2M]
	e)	Explain cone of friction.	[L2][CO1]	[2M]
2.		following forces act at a point: 20 N inclined at 30° towards North of East 25 N towards North 30 N towards North West, and 35 N towards at 40° towards South of West. the magnitude and direction of the resultant force.	[L3][CO1]	[10M]
3.		rmine the resultant and its inclination with the horizontal axis of three s acting on a hook as shown in Figure.2. Figure. 2	[L4][CO1]	[10M]

8.	Determine the frictional force developed on the block shown in Figure. 6 when (i) $\mathrm{P}=40 \mathrm{~N}$ (ii) $\mathrm{P}=80 \mathrm{~N}$. Coefficient of static friction between the block and floor is $\mu_{\mathrm{s}}=0.3$ and $\mu_{\mathrm{k}}=0.25$ and (iii) Also find the value of P when the block is about to move. Figure. 6	[L4][CO1]	[10M]
9.	The system of forces acting on a bell crank is shown in Figure.7. Determine the magnitude, direction and the point of application of the resultant. Figure. 7	[L3][CO1]	[10M]
10.	Find the resultant of the force system shown in Figure. 8 acting on a lamina of equilateral triangular shape. Figure. 8	[L3][CO1]	[10M]
11.	Two blocks A and B are placed on inclined planes as shown in Figure.9. The block A weighing 1000 N . Determine minimum weight of the bock B for maintaining the equilibrium of the system. Assume that the blocks are connected by an inextensible string passing over a frictionless pulley. Coefficient of friction between block A and plane also block B and plane is 0.25 . Figure. 9	[L4][CO1]	[10M]

UNIT - II

Equilibrium of Systems of Forces

5.	A roller of radius $r=300 \mathrm{~mm}$ and weight 2000 N is to be pulled over a curb of height 150 mm as shown in Figure 4 by a horizontal force P applied to the end of a string around tightly around the circumference of the roller. Find the magnitude of P required to start the roller move over the curb. What is the least pull P through the centre of the wheel to just turn the roller over the curb? Figure. 4	[L3][CO2]	[10M]
6.	Two spheres A and B are resting in a smooth through as shown in Figure.5. Draw the free body diagrams of A and B showing all the forces acting on them both in magnitude and direction. Radius of spheres A and B are 250 mm and 200 mm , respectively. Figure. 5	[L4][CO2]	[10M]
7.	A simply supported beam of length 10 m , carries the uniformly distributed load and two point loads as shown in Figure.6. calculate the support reactions. Figure. 6	[L3][CO2]	[10M]

8.	A simply supported beam shown in Figure.7. Find the support reactions at A \& B. Figure. 7	[L3][CO2]	[10M]
9.	a)Define the following terms: (i) Perfect frame (ii) Imperfect frame (iii) Deficient frame and (iv) Redundant frame.	[L1][CO2]	[6M]
	b) What are assumptions made in find the forces in a frame?	[L1][CO2]	[4M]
10.	Using the method of joints, find the axial forces in all the members of a truss with the loading shown in Figure. 8 Figure. 8	[L3][CO2]	[10M]
11.	An overhanging beam ABC of span 3 m is loaded as shown in Figure.9. Using the principle of virtual work, find the reactions at A and B. Figure. 9	[L3][CO2]	[10M]

UNIT - III

Centroid
Centre of Gravity
Area Moments of Inertia
Mass Moment of Inertia

1.	a)	Define the terms centroid and centre of gravity.	[L1][CO3]	2M]
	b)	Define the terms moment of inertia and radius of gyration.	[L1][CO3]	[2M]
	c)	What are values of moment of inertia and polar moment of inertia for a circle of diameter ' d '?	[L1][CO3]	[2M]
	d)	State parallel axis theorem.	[L1][CO3]	[2M]
	e)	List when the product of inertia will be zero for an area.	[L2][CO3]	[2M]
2.	a)	State and prove Pappus-Guldinus theorems.	[L2][CO3]	[5M]
	b)	Determine the centroid of a semicircle of radius R about its diametral axis.	[L3][CO3]	[5M]
3.	Determine the centroid of the built-up section shown in Figure.1. Express the coordinates of the centroid with respect to x and y axes shown. Figure. 1		[L3][CO3]	[10M]
4.	Determine the coordinates x_{c} and y_{c} of the centre of a 100 mm diameter circular hole cut in a thin plate so that this point will be the centroid of the remaining shaded area shown in Figure.2. All dimensions are in mm . Figre. 2		[L3][CO3]	[10M]
5.	Determine the centroid of the area shown in Figre. 3 with respect to the axes shown. Figre. 3		[L3][CO3]	[10M]
6.	Locate the centre of gravity of the right circular cone of base radius ' r ' and height ' h '.		[L3][CO3]	[10M]
7.	a)	Derive Transfer Theorem in terms of Area Moment of Inertia.	[L2][CO4]	[5M]
	b)	Figure. 4 shows a plane area. Determine the product moment of inertia of the given area. All dimensions are in mm .	[L3][CO4]	[5M]

	Figure. 4		
8.	Find the centroid of the unequal I-section shown in Figure. 5 and calculate moment inertia about the centroid x and y axis. Also find moment inertia about base.	[L4][CO4]	[10M]
9.	The cross-section of a rectangular hollow beam is as shown in Figure.6. Determine the polar moment of inertia of the section about centroidal axes. Figure. 6	[L4][CO4]	[10M]
10.	a) Find the polar moment of inertia of a circle.	[L3][CO4]	[5M]
	b) For a triangle of base ' b ' and height ' h ' find the moment of inertia about its base.	[L3][CO4]	[5M]
11.	Determine the moment of inertia of a solid sphere of radius R about its diametral axis.	[L3][CO4]	[10M]

UNIT - IV
 Rectilinear and Curvilinear motion of a particle

1.	a)	What is the difference between study of particle motion under Kinetics \& Kinematics.	[L1][CO5]	[2M]
	b)	Explain the terms Rectilinear and Curvilinear motion.	[L2][CO5]	[2M]
		Define the terms Time of Flight and Range in projectile	[L1][CO5]	[2M]
	d)	Explain the terms Work and Energy. Give their units in SI system.	[L2][CO5]	[2M]
		What is Impulse? Write Impulse Momentum equation.	[L1][CO5]	[2M]
2.	Three marks ' A ', ' B ', and ' C ' at a distance of 100 m each are made along a straight road. A car starting from rest and with uniform acceleration passes the mark ' A ' and takes 10 seconds to reach ' B ' and further 8 seconds to reach the mark ' C '. Calculate (i) the magnitude of acceleration of the car (ii) the velocity of the car at ' A ', (iii) the velocity of car at B and (iv) the distance of the mark ' A ' from the starting point.		[L1][CO5]	[10M]
3.	Determine the time required for a car to travel 1 km along a road if the car starts form rest, reaches a maximum speed at some intermediate point, and then stops at the end of the road. The car can accelerate or decelerate at 1.5 $\mathrm{m} / \mathrm{s}^{2}$.		[L3][CO5]	[10M]
4.	The velocity of a particle moving in a straight line is given by the expression $\mathrm{v}=\mathrm{t}^{3}-\mathrm{t}^{2}-2 \mathrm{t}+2$. The particle is found to be at a distance 4 m from station A after 2 seconds. Determine: (i) acceleration and displacement after 4 seconds; (ii) Maximum/ minimum acceleration.		[L3][CO5]	[10M]
5.	A stone is thrown vertically upwards with a velocity of $19.6 \mathrm{~m} / \mathrm{s}$ from the top of tower 24.5 m high. Calculate: (i) time required for the stone to reach the ground (ii) velocity of the stone in its downward travel at the point in the same level as the point of projection. (iii) the maximum height to which the stone will rise in its flight.		[L4][CO5]	[10M]
6.	a)	Derive an equation for the path traced by a projectile when projected into space with a velocity ' u ' at an angle ' α ' with the horizontal.	[L3][CO5]	[5M]
	b)	A pilot flying his bomber at a height of 2000 m with, a uniform horizontal velocity of 600 kmph wants to strike a target. At what distance from the target, he should release the bomb?	[L3][CO5]	[5M]
7.	A projectile is aimed at a mark on the horizontal plane through the point of projection and falls 12 m short when the angle of projection is 15°, while it overshoots the mark by 24 m when the same angle is 45°. Find the angle of projection to the mark. Assume no air resistance. Take the velocity of projection constant in all cases.		[L1][CO5]	[10M]
8.		State and prove work energy principle.	[L2][CO5]	[5M]
		A man weighing W Newton entered a lift which moves with an acceleration of a $\mathrm{m} / \mathrm{s}^{2}$. Find the force exerted by the man on the floor of lift when (i) lift is moving downward (ii) lift is moving upward.	[L4][CO5]	[5M]
9.	Two weights 800 N and 200 N are connected by a thread and move along a rough horizontal plane under the action of force 400 N applied to the first weight of 800 N as shown in Figure.1. The coefficient of friction between the sliding surfaces of the weights and the plane is 0.3 . Determine the acceleration of the weights and the tension in the thread using D'Alembert's principle.		[L3][CO5]	[10M]

	800 N		
10.	A mass of 20 kg is projected up an inclined of 26° with velocity of $4 \mathrm{~m} / \mathrm{s}$ as shown in Figure.2. If $\mu=0.2$, (i) find maximum distance that the package will move along the plane and (ii) What will be the velocity of the package when it comes back to initial position?	[L4][CO5]	[10M]
	Figure. 2		
11.	A 20 kN automobile is moving at a speed of 70 kmph when the brakes are fully applied causing all four wheels to skid. Determine the time required to stop the automobile (a) on concrete road for which $\mu=0.75$, (b) on ice for which $\mu=$ 0.08 .	[L3][CO5]	[10M]

UNIT - V
 Rigid body Motion

$\left.\begin{array}{|l|l|l|l|}\hline 9 . & \begin{array}{l}\text { A flywheel weighing } 50 \mathrm{kN} \text { and having radius of gyration } 1 \mathrm{~m} \text { loses its speed } \\ \text { from } 400 \mathrm{rpm} \text { to } 280 \text { rpm in } 2 \text { minutes. Calculate (i) the retarding torque acting } \\ \text { on it. (ii) change in its kinetic energy during the above period. }\end{array} & {[\mathrm{L} 3][\mathrm{CO}]} & {[10 \mathrm{M}]} \\ \hline 10 . & \begin{array}{l}\text { A roller of mass } \mathrm{m}=600 \mathrm{~kg} \text { and radius } \mathrm{r}=0.25 \mathrm{~m} \text { is pushed with a constant } \\ \text { force } \mathrm{P}=850 \mathrm{~N} \text { on a rough horizontal plane as show in Figure.2. If the roller } \\ \text { starts from rest and rolls without slipping, find the distance required to be } \\ \text { rolled if it is to acquire a velocity of } 3 \mathrm{~m} / \mathrm{s} .\end{array} & {[\mathrm{L} 3][\mathrm{CO}]}\end{array}\right]\left[\begin{array}{ll}{[10 \mathrm{M}]} \\ \hline 11 . & \begin{array}{l}\text { A glass marble, whose weight is } 0.2 \mathrm{~N}, \text { falls from a height of } 10 \mathrm{~m} \text { and } \\ \text { rebounds to a height of } 8 \text { metres. Find the impulse and the average force } \\ \text { between the marble and the floor, if the time during which they are in contact } \\ \text { is } 1 / 10 \text { of a second. }\end{array} \\ \hline\end{array}\right.$

Prepared by C Siva Kumar Prasad, Associate Professor, Department of Civil Engineering

